Download_on_the_App_Store_Badge_FR_RGB_blk_100517

Le noyau de la Terre grossit de façon déséquilibrée depuis au moins un demi-milliard d'années

  • Recevoir tous les articles sur ce sujet.

    Vous suivez désormais les articles en lien avec ce sujet.

    Ce thème a bien été retiré de votre compte

Le noyau de la Terre grossit de façon déséquilibrée depuis au moins un demi-milliard d'années
Représentation du coeur de la Terre. © Getty Images

Pensez à la Terre comme à une sucette géologique. Si vous jetez un coup d'œil à plus de 5 000 kilomètres sous vos pieds, au centre de la planète, vous verrez une boule de fer dense et solide dont la taille équivaut à peu près aux trois quarts de celle de la Lune. Ce sphéroïde de fer est le noyau interne, et il est niché à l'intérieur du noyau externe en fusion de la planète.

Le noyau interne est toujours en croissance : son rayon augmente d'un millimètre chaque année à mesure que les morceaux de fer fondu du noyau externe refroidissent et se solidifient en cristaux de fer. Bien que les températures dans le noyau interne soient suffisamment élevées pour liquéfier le fer, la pression intense qui règne dans les profondeurs de la planète empêche les cristaux de fondre — imaginez que c'est comme tasser une boule de neige dure.

À lire aussi — Les restes enfouis d'une ancienne planète pourraient impacter le champ magnétique terrestre

Mais selon une étude récente publiée dans la revue Nature Geoscience, le noyau interne se développe de façon déséquilibrée. Une moitié de la sphère, la moitié orientale située sous la mer de Banda en Indonésie, accumule 60% de cristaux de fer de plus que sa contrepartie occidentale, qui se trouve sous le Brésil. "Le côté ouest semble différent du côté est jusqu'au centre", a déclaré dans un communiqué Daniel Frost, sismologue à l'université de Californie à Berkeley, qui a cosigné la nouvelle étude. "La seule façon d'expliquer ce phénomène, c'est qu'un côté grandit plus vite que l'autre."

Une croissance asymétrique dans le noyau

Ce graphique montre comment les cristaux de fer sont distribués et se déplacent dans le noyau interne de la Terre. Marine Lasbleis

Bien que la Terre ait plus de 4 milliards d'années, son noyau interne est plus jeune — les géologues pensent qu'il s'est formé entre un demi-milliard et 1,5 milliard d'années, lorsque des morceaux de fer liquide provenant du noyau externe ont commencé à se cristalliser. L'équipe de Daniel Frost a créé un modèle informatique qui a suivi la croissance du noyau interne au cours du dernier milliard d'années. Ils ont constaté que la nature asymétrique du noyau a probablement commencé dès sa formation.

Bien sûr, si une moitié a grandi plus vite que l'autre pendant si longtemps, la forme du noyau interne ne devrait plus être sphérique. Or, ce n'est pas le cas. Daniel Frost et ses collègues pensent donc que la gravité peut compenser la croissance asymétrique, en poussant les cristaux en excès du côté est du noyau vers son côté ouest, aidant ainsi le noyau à conserver sa forme de boule.

Vue d'artiste des couches de la Terre, y compris la croûte, le manteau et les noyaux interne et externe. Getty Images

L'équipe de Daniel Frost ne sait pas exactement pourquoi les cristaux de fer se forment de manière inégale dans le noyau interne, mais il a déclaré que la réponse se trouve probablement dans les couches supérieures — à la fois le noyau externe et le manteau, une bande de roches chaudes de près de 2 900 kilomètres d'épaisseur sur laquelle flottent les plaques tectoniques.

"Chaque couche de la Terre est contrôlée par ce qui se trouve au-dessus d'elle et influence ce qui se trouve en dessous", a déclaré Daniel Frost à Live Science. Si le fer se cristallise plus rapidement d'un côté du noyau interne que de l'autre, cela signifie que le noyau externe se refroidit plus rapidement de ce côté. Ainsi, le manteau de ce côté doit, à son tour, refroidir le noyau externe plus rapidement que le manteau de l'autre côté.

La genèse de cette chaîne de refroidissement, selon Daniel Frost, pourrait être les plaques tectoniques de la Terre. Lorsqu'une plaque pousse contre une autre, l'une d'elles s'enfonce, sous l'autre, c'est le phénomène de subduction. La plaque en subduction refroidit le manteau dans cette zone de la planète.

La croissance asymétrique du noyau pourrait avoir un impact sur le champ magnétique de la Terre

Une illustration du champ magnétique de la Terre, en bleu, qui protège la planète du rayonnement solaire. NASA

Le noyau de la Terre joue un rôle essentiel dans la protection de la planète contre les vents et les rayonnements solaires dangereux. Le fer tourbillonnant dans le noyau externe génère un champ magnétique qui s'étend de là jusqu'à l'espace entourant notre planète. Ce tourbillon est dû, en partie, à un processus au cours duquel la matière plus chaude et plus légère du noyau externe s'élève dans le manteau au-dessus. Là, elle est remplacée par la matière plus froide et plus dense du manteau, qui s'enfonce dans le noyau inférieur. C'est ce qu'on appelle la convection.

La convection se produit également entre le noyau interne et le noyau externe. Si les différentes parties du noyau externe et du noyau interne se refroidissent à des vitesses différentes, cela pourrait affecter la quantité de chaleur échangée à la frontière, ce qui pourrait avoir un impact sur le moteur tourbillonnant qui alimente la gaine protectrice de la Terre.

"La question est de savoir si cela change la force du champ magnétique", a exposé Daniel Frost à Live Science. Pour l'instant, son groupe n'en est pas sûr, mais Daniel Frost a déclaré qu'il étudiait la réponse.

Version originale : Aylin Woodward/Insider

À lire aussi — L'axe de la Terre se déplacerait plus rapidement en raison du changement climatique, selon une étude

Découvrir plus d'articles sur :